Quarkonia in pp and pA collisions with ATLAS

Miguel Arratia

Cavendish Laboratory, University of Cambridge

High pT Physics in the RHIC-LHC Era @ BNL

Motivation

- Essential for even a qualitative understanding of AA collisions
- But quarkonia in pA interesting in its own right, as it probes QCD in medium
- Recent pA $\psi(2S)$ results challenge explanations in terms of initial state nuclear breakup, gluon shadowing and energy loss.

Outline

 J/ψ in 5 TeV pPb

 J/ψ and $\psi(2S)$ in 5 TeV pPb and 2.76 pp

 $\Upsilon(nS)$ in 5 TeV pPb and 2.76 pp

Inner detector

ullet Pixel and microstrip detectors provide resolution to measure $\,bb o \,J/\psi + X$

Muon Spectrometer

Multiple layers of tracking and trigger chambers that cover $|\eta| < 2.4$

 Momentum measurement with bending from azimuthal magnetic field.

 Standalone operation (can do tracking, vertexing without inner detector)

Calorimeter system and its impact on this measurement

 Muons loose about 3 GeV of energy before getting to muon spectrometer

Cons: Cannot measure low pT muons, limiting acceptance for charmonium states

Pros: Hermeticity of calorimeter reduces the background from hadrons

Datasets

p-Pb @ 5 TeV

 $28.1 \text{ nb}^{-1} \pm 2.7\%$

pp @ 2.76 TeV

$$3.9 \text{ pb}^{-1} \pm 3.1\%$$

Event selection

Dimuon trigger, requires $p_{\rm T}>2~{
m GeV}$ for each one. Full event reconstruction at software level

For analysis we select muons with $p_{\mathrm{T}} > 4~\mathrm{GeV},~|\eta| < 2.4$

Measurement of differential J/ψ production cross sections and forward-backward ratios in p + Pb collisions with the ATLAS detector

ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.) Mostrar todos los 2810 autores

May 29, 2015 - 23 pages

Phys.Rev. C92 (2015) no.3, 034904

2D fit to mass and pseudo-lifetime

Primary

Vertex

Displaced

Dimuon Vertex

- from b-hadron decays
- Event-by-event weighting for acceptance, reconstruction, and trigger efficiencies

Differential cross-section, ion going side

Differential cross-section, proton going side

Prompt J/ψ drops faster

J/ψ from b-hadrons compared with theory

Reasonable agreement with FONLL calculation of $~bb \to ~J/\psi + X$ (without nuclear effects), but theory errors are large.

J/ψ from b-hadrons compared with theory

Reasonable agreement with FONLL calculation of $~bb \to ~J/\psi + X$ (without nuclear effects), but theory errors are large.

15

Forward-to-backward ratio

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{d^2 \sigma(p_{\rm T}, y^* > 0)/dp_{\rm T} dy^*}{d^2 \sigma(p_{\rm T}, y^* < 0)/dp_{\rm T} dy^*}$$

- Consistent with unity within uncertainties in both cases
- Consistent with expectations from calculations that include shadowing

30

p_{_} [GeV]

25

Forward-to-backward ratio

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{d^2 \sigma(p_{\rm T}, y^* > 0)/dp_{\rm T} dy^*}{d^2 \sigma(p_{\rm T}, y^* < 0)/dp_{\rm T} dy^*}$$

- Consistent with unity within uncertainties in both cases
- Consistent with expectations from calculations that include shadowing.

Comparison with LHCb

Combined data suggest strong kinematic dependence of nuclear effects

ATLAS NOTE

ATLAS-CONF-2015-023

Study of J/ψ and $\psi(2S)$ production in $\sqrt{s_{NN}} = 5.02$ TeV p+Pb and $\sqrt{s} = 2.76$ TeV pp collisions with the ATLAS detector

Signal extraction, p-Pb @5 TeV

- More sophisticated fit model , but idea is the same as previous analysis
- Get fraction from b-decay in both psi(2s) and J/psi case

Interpolation to get pp reference at 5.02 TeV

Interpolation performed bin-by-bin

$$R_{p ext{Pb}} = rac{1}{A^{ ext{Pb}}} rac{arphi}{d^2 \sigma_{\psi}^{pp}/dy dp_{ ext{T}}}$$

No strong pT dependence in either case

$$R_{p\text{Pb}} = \frac{1}{A^{\text{Pb}}} \frac{d^2 \sigma_{\psi}^{p+1.0} / dy^* dp_{\text{T}}}{d^2 \sigma_{\psi}^{pp} / dy dp_{\text{T}}}$$

No strong rapidity dependence in either case

$$\text{Prompt } \psi(2S) \quad R_{p\text{Pb}} = \frac{1}{A^{\text{Pb}}} \frac{d^2 \sigma_{\psi}^{p+\text{Pb}}/dy^* dp_{\text{T}}}{d^2 \sigma_{\psi}^{pp}/dy dp_{\text{T}}}$$

Consistent with unity, no strong kinematic dependence

Centrality determination

- Uses forward calorimeters in Pb going side
- Glauber model, and extensions used to determine mean number of participants
- Analysis assumes no correlation between hard scattering and soft underlying activity

Forward Calorimeters (FCal) $3.2 < \eta < 4.9$

Centrality bias correction

Phys. Rev. C 92, 044915 (2015)

 Estimate of impact of correlation between hard scattering and soft underlying event from model [arXiv:1412.0976] and data.

$$R_{p\text{Pb}} = \frac{1}{\langle T_{p\text{Pb}}\rangle_{\text{cent}}} \frac{1/N_{\text{evt}} \ d^2 N_{\psi}^{p+\text{Pb}}/dy^* dp_T}{d^2 \sigma_{\psi}^{p}/dy dp_T}$$

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1$$

After centrality bias correction, ratio is flat

$$\psi(2S) R_{p\text{Pb}} = \frac{1}{\langle T_{p\text{Pb}} \rangle_{\text{cent}}} \frac{1/N_{\text{evt}} d^2 N_{\psi}^{p+\text{Pb}} / dy^* dp_{\text{T}} |_{\text{cent}}}{d^2 \sigma_{\psi}^{pp} / dy dp_{\text{T}}}$$

Hint of centrality dependence

Standard candle: the Z boson

Use Z as a model independent reference of centrality

Prompt J/ψ to Z ratio vs multiplicity

Flat ratio, suggest no strong modification

J/ψ from $m{b}$ to ${f Z}$ ratio vs multiplicity

Flat ratio, suggest no strong modification

Prompt $\psi(2S)$ to Z ratio vs multiplicity

Hint of suppression at high multiplicities

ATLAS NOTE

ATLAS-CONF-2015-050

Measurement of $\Upsilon(nS)$ production with p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and pp collisions at $\sqrt{s} = 2.76$ TeV

$\Upsilon(nS)$ Differential cross-sections

- Larger mass allows us to measure down to pT = 0
- We combine cross-sections for excited states

$\Upsilon(1S)$

$$R_{p\text{Pb}} = \frac{1}{A^{\text{Pb}}} \frac{a \sigma_{\psi}^{p} / ay ap^{p}}{d^{2} \sigma_{\psi}^{pp} / dy dp_{\text{T}}}$$

 Consistent with unity, no strong kinematic dependence

$$\Upsilon(1S) R_{p\text{Pb}} = \frac{1}{\langle T_{p\text{Pb}} \rangle_{\text{cent}}} \frac{1/N_{\text{evt}} d^2 N_{\psi}^{p+\text{Pb}} / dy^* dp_{\text{T}} |_{\text{cent}}}{d^2 \sigma_{\psi}^{pp} / dy dp_{\text{T}}}$$

After centrality bias correction, flat and consistent with unity

Double Ratio vs multiplicity

- Double ratio cancels any modification that is common to excited and ground states
- Hint of centrality dependence, excited states more suppressed.

 Double ratio cancels any modification that is common to excited and ground states

Bottomonia

Charmonia

Conclusions

ATLAS has started to produce quarkonia data in pA and pp collisions

$$J/\psi$$
 , $\psi(2S)$ and $bb
ightarrow J/\psi + X$

Do now show strong kinematic modification wrt to pp ref

Hints of multiplicity dependence of excited to ground ratio

$$\Upsilon(nS)$$

Do now show strong kinematic modification wrt to pp ref

Hints of multiplicity dependence of excited to ground ratio

Stay tuned: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

Looking forward for update results with 5 TeV pp data!

BACKUP SLIDES

Double ratio vs multiplicity

$\Upsilon(1S)$

p+Pb collision beam configuration

Double Ratio

Signal extraction , $\psi(2S)$ included

Fraction of J/psi from b-hadrons

Increases with transverse momentum, from 25% to 50%

No strong rapidity dependence, flat about 30%

Signal extraction, pp @ 2.76 TeV

- More sophisticated fit model, but idea is the same as previous analysis
- Get fraction from b-decay in both psi(2s) and J/psi case

Differential cross-section, pp 2.76 TeV

Prompt J/ψ

Prompt $\psi(2S)$

Differential cross-section, pp 2.76 TeV

Self-normalized ratio

$$\frac{\psi}{\langle \psi \rangle} = \frac{N_{\psi}/N_{\text{evt}} \mid_{\text{cent}}}{N_{\psi}^{0-90\%}/N_{\text{evt}}^{0-90\%}}$$

Hint of non-linearity at high multiplicities

Obtained from MinBias events

Obtained from

MinBias events

Double ratio vs multiplicity

(hint of) More suppression for psi(2S) at higher multiplicities 52

Interpolation to 5.02 TeV

Measured cross-section at 2.76 and 7 TeV used to estimate value at 5.02 TeV

Differential cross-sections

Complementary to ALICE/LHCb results

Average corrections for J/psi

Driven by acceptance correction.

Flat in rapidity, but strong transverse momentum dependence

Acceptance correction

Fraction of simulated J/psi events that fall with muons in fiducial acceptance

Purely geometric correction. (no detector effects)

Isotropic decay assumed (i.e, no polarization)

Requirement of muon pT > 4 GeV drives the acceptance loses

Signal extraction

Clean signal

Low background level thanks to hermetic calorimeter system

Background, mostly from open heavy flavour decays, is modelled with a polynomial

Signal extraction

"Prompt J/psi"

= directly produced, or decay from heavier charmonium states)

"Nonprompt J/psi"

= from B-hadron decays

Background shape extracted from sideband region.

Differential cross-section vs rapidity

Fit model

i	Type	Source	$f_i(m)$	$h_i(au)$
1	J/ψ S	P	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$\delta(au)$
2	J/ψ S	NP	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$E_1(\tau)$
3	$\psi(2S) S$	P	$\omega_i CB_2(m) + (1 - \omega_i)G_2(m)$	$\delta(au)$
4	$\psi(2S) S$	NP	$\omega_i CB_2(m) + (1 - \omega_i)G_2(m)$	$E_2(\tau)$
5	Bkg	P	flat	$\delta(au)$
6	Bkg	NP	$E_3(m)$	$E_4(au)$
7	Bkg	NP	$E_5(m)$	$E_6(\tau)$

Table 2: Probability density functions for individual components in the fit model used to extract the prompt (P) and non-prompt (NP) contributions for the J/ψ and the $\psi(2S)$ signal (S) and background (Bkg). The index, i, runs from 1 to 7 for 7 different components. The composite pdf terms are defined as follows: CB - Crystal Ball; G - Gaussian; $E(\tau)$ - single sided exponential; $E(|\tau|)$ - double sided exponential; δ - delta function. The parameter ω is the fraction of CB function in the signal.

B-fractions pp 2.76 TeV data

Centrality bias correction for p-Pb collisions

$\psi(2S)$ to J/ψ ratio vs multiplicity

